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Guidance and Control Section

The pointing control loops of DSN antennas do not account for unmodeled deflections

of the primary and secondary reflectors. As a result, structural distortions due to unpre-

dictable environmental loads can result in uncompensated boresight shifts which degrade

pointing accurao'.

The design proposed here can provMe real-time bias commands to the pointing control

system to compensate for environmental effects on pointing performance. The bias com-

mands can be computed in real time from optically measured deflections at a number of

points on the primary and secondary reflectors. Computer simulations with a reduced-

order finite-element model of a DSN antenna validate the concept and lead to a proposed

design by which a ten-to-one reduction in pointing uncertainty can be achieved under

nominal uncertainty conditions.

I. Introduction

Current pointing system designs for DSN antennas do not

incorporate effects beyond some reference plane which sepa-

rates the control system from the antenna tipping structure,

which includes the primary reflector, the secondary reflector,

the quadripod, and the feedcone. For example, the DSN 70-

meter antenna pointing system determines the main az-el

pointing servo-drive error signals from a two-axis autocolli-

mator mounted on the Intermediate Reference Structure

(IRS) (see Fig. 1) [1]. By projecting a light beam onto a pre-

cision mirror mounted on the Master Equatorial (ME) and

measuring the angular deviation of the reflected beam from

the nominal orientation, the autocollimator determines an

error signal which results from the nonparallelism of the two

surfaces.

Because the tipping structure is outside the pointing control

loop, uncompensated boresight shifts will typically result from

the distortion of the structure due to environmental loads.

Self-compensating effects in the structural design of the an-

tenna limit the net peak pointing offset to approximately

100 millidegrees even though structural deformations of the

components of the antenna system can individually produce

equivalent pointing shifts of nearly 1 degree due to unmodeled

environmental loads.

The schematic diagram in Fig. 2 illustrates the effect of

structural distortion on pointing capability. According to design

specifications, the axes of the main reflector paraboloid and

the subreflector hyperboloid lie on an axis normal to the IRS,

which passes through the vertex of the paraboloid. As indi-
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cated by the broken line, environmental forces which distort

the structure prevent rays reflected from different segments
of the antenna from being focused onto the IRS reference

axis. The design objective of a pointing error compensation
system is to bias the pointing command so that the centroid

of energy with respect to the target falls along the IRS refer-

ence axis. Other DSN antennas also employ compensator
designs which do not correct for the effect of distortions due

to unmodeled environmental loads on the tipping structure.

The principal environmental factors acting on the antenna

are gravity, wind, and thermal effects. Gravity, the largest but

most predictable load on the structure, causes sagging in the
primary reflector and varies as a function of elevation angle.

In addition, the gravitational effects lead to a displacement of

the quadripod structure and a resultant displacement of the

subreflector. The effects of gravity can be modeled by means
of the finite element models which are available for DSN

antennas, and, since the effects are predictable, the resulting

boresight errors can be offset through a calibration process.

The resulting look-up tables then provide an elevation point-
ing command bias signal to compensate for gravitationally

induced pointing errors as a function of elevation angle. Wind
and thermal effects on the structure lead to considerably less

severe distortions but are also much less predictable.

By using look-up tables to bias the elevation pointing com-
mand to compensate for gravitational effects, a blind pointing

capability of approximately 10 millidegrees is currently achiev-

able in weather conditions that range from benign to moder-

ately windy. With the recently completed upgrades to enlarge
and improve the shape of the large DSN tracking antennas in

combination with future plans to quadruple the upper operat-
ing frequency, it is desirable to improve pointing precision to

1 millidegree so as to fully realize the benefits of the upgrades
for 32-GHz (Ka-band) operation.

The following presents a description and analysis of a

real-time optical measurement and processing concept which

delivers real-time pointing system bias commands to compen-
sate for the effects of environmentally induced structural

distortions. The concept requires optical measurements

of the displacements of selected points on the primary and

secondary reflectors relative to some reference coordinate sys-

tem which lies at the base of the feedcone (e.g., the pointing
reference plane in Fig. 2).

The Spatial High-Accuracy Position Encoding Sensor

(SHAPES) system under development at JPL [2] was taken as

the baseline sensor for the measurement system since it is

capable of delivering multiple simultaneous high-speed (10
frames per second) ranging measurements with accuracies at

the submillimeter level. SHAPES is a time-of-flight laser rang-

ing sensor which measures ranges from multiple sources to

retroreflector targets placed at optically unobstructed loca-

tions. By means of a system of fiber-optic connections, each

SHAPES sensor head can accommodate up to 24 targets,
whose actual locations can be physically remote from the

head. By means of triangulation, the range measurements

taken from sensor heads fixed with respect to a known refer-

ence coordinate system can be combined to give two- and

three-dimensional displacement coordinates for a given retro-
reflector. A discussion of the effects on the SHAPES system

due to anticipated environmental uncertainties in DSN appli-
cations can be found in [3].

The discussion here deals only with the effects of unmod-
eled structural distortions beyond the reference coordinate

plane (i.e., primary reflector, secondary reflector, quadripod,
and feedcone) and assumes an a priori spatial knowledge of a
reference coordinate system, the determination of which is a

subject of current investigations in this technology. While

others have approached the problem of real-time compensa-
tion by combining SHAPES technology with purely geometri-
cal analysis [4], the treatment here is based on the solution

of an underlying structural estimation problem combined
with a geometrical synthesis. It is the framework of the esti-

mation problem that provides for a meaningful quantitative
evaluation of a given compensator design.

Section II begins with a general description of the proposed
compensator design and continues with a more detailed dis-

cussion of the resulting structural and geometrical problems.
Section III presents the simulation results based on a reduced-
order finite-element model of a DSN antenna. Section IV out-
lines the conclusions of this work.

II. Problem Formulation

A. Compensator Design

The current compensator design is based on a calibration

process for the effects of external loads such as gravity which

can be predicted by finite-element (FE) modeling analysis
(Fig. 3). The result is a tabulation of compensation signals

which depends on the current attitude of the antenna tipping
structure.

As a starting point for the calibration process, the modeled

external forces are taken as static load inputs to a high-order

finite-element model, and this results in a predicted estimate
for the shape of the main reflector as well as location esti-

mates for the subreflector and the feed. From this a parabolic
fit routine is used to obtain a least-squares fit of the main

reflector to a parabola of revolution. The effective boresight
axis can then be determined as a linear combination of terms
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which depends on the parameters of the best-fit parabola and

the position of the other rigidly modeled structural compo-

nents of the system [5]. More precisely, the boresight error
is determined as a linear combination of the vertex shift and

the rotation of the best-fit parabola, the lateral translation and

rotation of the subreflector, and the lateral translation of the

feed.

Such a control process is called open-loop in that there is
no feedback from the state of the system. The development

proposed here is a real-time structural-optical compensator

(Fig. 4) which incorporates measurement data into the process

of estimating the state of the structural system. The blocks of

the design which indicate the parabolic best fit and the bore-

sight determination can be used as before. The crucial block
of this real-time compensator design is the structural-optical
estinaator which combines modeled responses to static loads

with real-time measurement data (Fig. 5).

This block has the structure of a predictor-corrector system

whereby the difference between the observed data and what

can be predicted by a priori modeling leads to a correction
which is added to the prediction derived before measurements

are taken. Thus the dashed box in Fig. 5 denotes the structural

predictor leading to the estimate which conceptually deter-
mines the current structural compensator (Fig. 4). The key

ingredient in the structural-optical estimator is the filter gain
which is determined by the solution to an optimization prob-

lem posed in the finite-element space.

In the next subsections, key components of the structural-

optical compensator design are discussed in more detail. The
structural-optical estimator is derived by means of a shape-

determination problem posed in a finite-element space. Next

the parabolic fit analysis is discussed and specialized to the
two-dimensional case, which was the version used in the simu-

lations subsequently undertaken.

B. Static Shape Determination

A number of important emerging applications in the tech-
nology of large space structures can be appropriately analyzed

as statically loaded structural systems. This approach is appli-

cable to systems where the time-dependent effects are negli-

gible and where the relevant forces do not significantly excite

dynamic behavior in the system. More generally, one can con-

sider problem settings where the stiffness properties dominate

the mass properties in determining the energy balances. Then

a static response of the structure defines a reference configura-
tion about which motions can be resolved with greater accu-

racy. In this context one can include applications where the
time-varying effects of the model are changing slowly with

respect to the scale on which operations must be carried out.

These quasi-static disturbances may, for example, include

gravitational and thermal effects.

The introduction of statistical model errors allows the

smearing of effects which have been ignored in the modeling
or which occur on too fine a scale to be adequately modeled.

This treatment of the system error distinguishes this approach

from purely dynamic treatments of the problem. As a result
the observational data can be statistically referenced to a

plant, and questions regarding the validity of the estimates
can be treated in a statistical framework which includes model-

ing errors as well as observational errors. The approach devel-

oped here leads to a framework which is suitable for combin-
ing a variety of geometric and structural models with a variety

of mechanical and electro-optical sensing systems.

Of particular interest are the many large space antenna

systems such as the DSN antennas. Performance requirements
in communications and radiometry call for antennas with

increasingly large diameters and surface-error requirements

far beyond current capabilities.

This section summarizes the basic analysis which supports

the static shape determination algorithms. This approach to

shape estimation is part of an integrated methodology com-

bining the techniques of modeling, identification, and esti-
mation for static control of distributed systems. A more com-

plete discussion of this framework is given in [6] and [7].

Let the state variable be given by _. The models considered

have the general form

Au = Cf +B¢o (1)

.-).

.,v = Hu + F-_ (2)

Here A is an operator representing the system model. The pre-

liminary analysis can begin with coarse geometric models

which are suitable for resolving overall features. More detailed
resolutions are then obtained by taking A to be a stiffness

matrix. This type of fine-scale resolution can be idealized by

taking A to be an invertible self-adjoint elliptic differential

operator defined over some spatial domain. The operator A
is assumed to be invertible with inverse qb; this gives

• A =I

where I is the identity. The two terms on the right-hand side

of Eq. (1) respectively represent the modeled and unmodeled

loads on the system. In particular C is an operator that charac-
terizes the relevant deterministic forces, while B is an operator

that characterizes the process errors that influence the state.
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The vector y represents an observation of the system (i.e., a

set of measurements). H is an operator that characterizes the

state-to-observation map. It is assumed that the observation

space has dimension N s which corresponds to a finite-dimen-
sional sensing scheme. The second term on the right-hand side

of Eq. (2) represents the measurement errors present in the

observation _. The integrated form of the observation equa-

tion is given by

y = HcbC +H_B +F_

There are three inner-product spaces of primary interest:

the input space S 1 towhich the process error B_ and the

deterministic input Cf belong; the state space S 2 containing
the state _,, and the measurement space S 3 where the data
and the observation error F_ belong. The inner product

between two arbitrary elements u and v in the space S i is

denoted by <u,v) i or by the simpler notation u • v = <u,v> i.
Similarly, uv, denotes an outer product. The corresponding

norms are given by II "Ili or, when the context is clear, by the
simpler notation II " I1.

The appropriately dimensioned operators B and F model

the statistical influence of the process error and the measure-

ment error; these errors, co and r/, form the model error vector

which represents spatial white noise and is characterized by
the covariance operator

E(}}*) = 1

where E(') denotes the expectation operator. More precisely.

forxleS 1 and x3cS 3 , one has

E[w] = 0 E[<x,,w>, = x I

E = 0 E[<x3, = x 3

The limiting cases IIBII _ 0 and ]IFII _ 0 respectively

represent the assumptions of perfect modeling and perfect
measurements.

The abstract quantities in Eqs. (1) and (2) take on relevant

physical meanings in the context of the application under
consideration. Here the state ff represents the elastic deforma-

tion of the antenna tipping structure as modeled by A, a
finite-element stiffness matrix. The modeled forces C_are

restricted to gravity only while the process-error term B_

represents all unmodeled environmental loads as well as inac-

curacies in the finite-element model. The vector of observa-

tions y results from the sampling of the state by the measure-

ment system (i.e., SHAPES), which is characterized by the
state-to-observation map H and the measurement error term
F¢

The preceding assumptions lead to an appropriate frame-
work for the analysis of minimum variance estimators of the

state. Here the expected observation m is characterized by

rn =Hq_

[;1 [(; M*+RE = m E - *] = HR w r7

and the expected process and measurement covariances R_

and R

R w = dPBB*cb* R n = FF* (3)

The resulting formulas are similar to the typical Kalman gain

formulations used in the analysis of dynamical systems [8].

The minimum-variance estimate Uesr has the form

Ues t = uo + g(y-m )

where the gain g is given by

g = R H*(R +HR H*) -1

Thus, as illustrated in Fig. 5, the structural-optical estimator

acts as a predictor-corrector scheme where the prediction
comes from the modeled value of the state and where the cor-

rection is determined by the discrepancy between the modeled
state and the actual measurements.

The covariance operator associated with the estimation

error is given by

P = R -R H*(R +HR H*)-'HR w (4)

The covariance then can be used to determine the expected
error before and after measurements:

E[tlu-u oil 2] = tr[Rwl

E[llu- stll 2] = tr[P]

(5)
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From Eqs. (3), (4), and (5) it follows that

Eiil '-.;,,ll21 < EIH '-. o 1121

That is. the incorporation of measurements reduces the ex-

pected error in the estimate of the state (i.e., the shape of the

antenna tipping structure).

In the case where A represents a finite-element stiffness
matrix, a number of static loading problems must be solved in

order to approximate the gain and the covariance. For exam-

ple, when the state-to-observation map H returns point-values

of the state, one needs to compute fundamental solutions

which correspond to unit static loads at the observed points.

One can also consider possibilities for recursive batch

processing of data sets obtained by means of different sensing
strategies. For example, Eq. (2) can be replaced by two sets of
observations:

y, = H,u+F1_ 1

"}'2 2 _ -_" --_= + F2_ 2

An analysis of the second-order statistics of the related esti-

mation error can also be conducted. Such an approach was

implemented in [9] to combine optical measurements with

data taken from radiation patterns to obtain optimal estimates
for antenna surface deformations.

C. Parabolic Fit Analysis

The problem of fitting a reflector deformation model with
many degrees of freedom to a parabola of revolution has been

treated for DSN applications elsewhere in detail (see, for exam-

ple, [10], [11]). The problem is generally treated in a least-

squares formulation about the undisturbed dish, and the mini-
mization is carried out with respect to the sums of squares of

the pathlength errors associated with each point in the discreti-
zation. It can be shown that the pathlength error at a point

can be trigonometrically related to the normal component of

the surface error (cf. Eq. (7)). Here is a summary of the

analysis when specialized to two spatial dimensions. The

relevant equation is

),2
Z = --

4y

-l_y_<l

where the coordinates y and z and the focal parameterfhave

been normalized by the radius of the dish.

The grid G = {(Yi, zi)) is chosen so that the deformation
can be represented sufficiently accurately by these point values.

For this application the )'i-values are the nodal locations of the
finite-element model, and the corresponding zi-values are the

displacements at the nodes. The differential distortion of the

parabola is represented by the so-called homology parameters
_'= (h(l), h(2), h(3), t/(4) )T where

h (x) = shift in vertex 0'-coordinate)

h (2) = shift in vertex (z-coordinate)

h (3) = rotation about origin in the y/z plane

h (4) = relative change in focal length (Af/f)

The analysis is very similar in the three-dimensional case,
where there are two additional homology parameters (one for

the shift in vertex, one for the rotation).

Retaining only first-order terms, one can compute the dif-

ferential distortion at the point (Y):

h(_)] t1(3) Y + _zh(4)

where geometrically these three terms respectively represent
the translation, rotation, and focal shift of the parabola. Thus

the differential displacement of the parabolic point is given by

g(y,z)g

where the 2 × 4 matrix C(y, z ) is defined by

0-,,0z)
The normal to the surface at (Y) is given by

_(y,z ) - _ @1)

Then projecting the deflection onto the normal gives

gO',z) : _v,z) r gO',z) - I
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The deflection at each point is also projected onto the normal
direction

aO',z)-_O',z)

where p (y , z ) is a scalar.

It is now possible to form the normal equations on the grid

G by defining the N × 4 matrix

B[(Yl,z l)
BO%,z l)

,4 =

B (Y_v'zN)

and the N-dimensional vector

(i  Zl)
(y:¢, zNS/

This allows one to form the N-dimensional residual vector for
the normal deflections

The best-fit optimization problem is now posed as a minimiza-
tion of the residual with respect to the norm

,7, t -- w7

where W is an N X N symmetric positive definite matrix (see,

for example, [12]). The resulting normal equations are given
by

or equivalently

(ZTZ)h = _'r_"

W can be chosen as a diagonal matrix

W = diag [w I , w 2 ..... wN]

(65

where w i has the form

wi -- q (f_z ) (7)

Here a i is the length (or area) associated with each point. The

additional factor results in a minimization with respect to path
length.

The solution of Eq. (6) is then given by

h= Tb

-- (2 r w2)-'A f w
(85

Here the 4 × N matrix T is often called the pseudo-inverse.

III. Model Description and Simulation
Results

The functional block diagram in Fig. 6 outlines the concep-

tual framework in which the boresight determination problem

is treated in this article. The relevant synthesis problem focuses
on the determination of three antenna boresights:

(15 A gravitational boresight derived from a model for

gravitational deformations combined with a parabolic
fit.

(2) A true boresight derived from a model for gravitational

plus unmodeled deformations combined with a para-
bolic fit.

(35 An estimated boresight derived from an estimator

which integrates structural finite-element models,

gravitational deformation models, sampled measure-

ments of the true deformation vector, and a parabolic
fit.

As has been previously noted, current boresight pointing

technology is based on a calibration with respect to forces

whose effects can be adequately predicted (e.g., gravity). How-
ever, this calibration process is less successful when the dis-

turbance forces cannot be adequately modeled (e.g., thermal

effects, wind, etc.). The subsequent simulations were intended

to determine the requirements for a boresight estimator which,

under nominal uncertainty conditions, would recover the true

boresight to within 1 millidegree, a requirement beyond the

capabilities of the current calibration process. The design
parameters included the properties of the disturbance forces

(modeled and unmodeled) as well as the requirements for the

sensing configuration (number, placement, and accuracy). In

132



order to make the simulations more tractable, simplifications

were introduced in the structural, geometrical, and statistical

analyses.

For the structural analysis a reduced two-dimensional
antenna deformation model was derived from a high-order

finite-element model of a 34-meter DSN antenna (DSS-15).

More precisely, two ribs were designated as the north and
south ribs, and all deformations calculated from the three-

dimensional model were projected onto this pair (see Fig. 7).
The total number of nodal values retained was 26, and these

were evenly divided between the two ribs.

For the geometrical analysis of the parabolic fit, the two-

dimensional least-squares formulation given in Section lib

was implemented. In addition, only the third component of
the homology vector (h(3)) was used in the estimate of the

boresight. This component, the rotation about the origin in

the y/z plane, is the geometrical boresight of the best-fit

parabola and corresponds to the largest term in the computa-
tion of the structural boresight [5]. Thus, in the spirit of the

analysis of Section lib this work focuses on the boresight
errors associated with the structural deformations of the

primary reflector, and attention is restricted to the dominant
contribution. The other relevant components of the structural

boresight noted in Section II.A (vertex shift of best-fit para-

bola, lateral translational and rotation of the subreflector, and
lateral translation of the feed) could also have been included

in the analysis, making the simulations somewhat more com-

plex. Instead, the boresight errors associated with estimating

these contributions were acceptably bounded. In particular, it
was determined that the SHAPES system when combined with

a charge-coupled device (CCD) angle-measuring camera is

capable of measuring the subreflector position with suffi-
cient accuracy so that the resulting uncertainty in the bore-

sight is smaller than the errors considered here.

For the statistical analysis the weighting matrices for the

process error and the measurement error were taken to be
scalar:

F=oI
rl

B=o I
t_

(9)

where I is the identity. More general forms for F and B could
be used to characterize such features as a structural finite-

element model which is less reliable at some nodes than at

others, or a measurement system with some components that

are more accurate than others.

The preceding assumptions lead to the following version of

the formulations given in Section II:

Cf _ (10)
AU = +o _

-" _ (11)y = Hu+onr 1

(3 = QTNu (12)

Here Eqs. (10) and (11) are simply Eqs. (1) and (2) com-
bined with the simplification given by Eq. (9). In Eq. (12),

is the mapping that projects the state (i.e., the deflection of
the structure) onto the normal component. Then T is the

pseudo-inverse given in Eq. (8) which maps the normal deflec-
tions onto the vector of homology parameters h. And finally,

maps the homology parameters onto the boresight value.

In accordance with the simplifying assumptions outlined

here, Q is given by

_) = [0,0,1,0]

That is, _9 is a projection onto the third homology parameter

(h(3)), which denotes the rotation about the origin in the y/z

plane. More generally, the dimension of/3 could be increased
to account for the other rotational degree of freedom which
must be treated in the full three-dimensional problem. Also,

the input-space could be augmented to include the measured
estimates of the subreflector and feedcone positions. By a

principle of optimality for linear systems [8], the minimum-
variance estimate for _ can be written in terms of the minimum-
variance estimate for if'as

fJest = Q TN Ues t

The other statistical qualities are similarly transformed.

Thus, with the definitions

(o_) z = E [(_ - flo )2 ] (I 3)

(o_)2 = E [(_ - fl_,)21

one can show the precise relationship between the state co-

variances (cf. Eqs. (3). (4)) and the boresight covariances as

(o_) 2 = (_)TN)R (_)T]V)*
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These quantities can be identified with the outputs of the

block diagram in Fig. 6. Thus, the quantities _3,/3o, and [Jest

respectively represent the true boresight, the modeled bore-

sight, and the estimated boresight. The expected boresight

errors before and after measurements are respectively given by

ooOand oa.t To these one can add a fourth boresight value

Here fJo, y_ Uo, and H are as previously given, the matrix it

gives the normal projection at the observed points only, and

the matrix Tfit is the pseudo-inverse (cf. Eq. (8)) which carries
out the parabolic fit with respect to the values at the observed

points only. The quantity'ffest represent tile boresight estimate

which is obtainable by purely geometrical analysis. In corre-

spondence to Eq. (13), one also has an expression for the
covariance:

: (uto) 2 (QTN)Rto (QTN)*

÷ (%? (Q :. :it) (Qr:.

The simulations focused on the covariance analysis of the

estimates. Thus, given the expected boresight error before

measurements (o_, the number and placement of targets
where measurements are taken (H), and the accuracy of the

measurements (an) , one can calculate the expected boresight
error of the estimates (o_, "_). For the results presented in
Fig. 8, the following specifications were made. First, the

model error parameter ow was chosen so that the expected
o would be 10 millidegrees. Theerror before measurements t_a

observation error parameter o, was taken as 50 micrometers,
a value consistent with the capability of the SHAPES system

[3]. The only additional specifications required are the num-

ber and placement of targets where the displacement values

are measured. Tkus, in Fig. 8 the quantities a_(j) and _'_(j),
where j is an even number, refer to the expected boresight
errors with ]/2 optimally located targets on each of the two

ribs in the reduced-order antenna model. Here the optimiza-

tion was carried out by evaluating all possible distinct target
locations and choosing the set which gave the lowest values

for the expected boresight error.

Thus, with a total of six optimally placed measurement
points the structural-optical estimator achieves a ten-to-one

reduction in the expected error of the estimated boresight.
One should note that the structurally-based estimators are

superior to the purely geometrical estimators, but they are

not substantially better. This observation may be interpreted
as being supportive of compensator designs based on real-

time optical measurements. That is, the sophistication of the

underlying estimator and the fidelity of the model may not
be too important so long as measurements are available. The

simulation results presented in Fig. 8 are the main quantita-
tive outcome of this work; they demonstrate that under

nominal uncertainty conditions a ten-to-one reduction in the

boresight error can be achieved by integrating structural

models, geometrical fitting analysis, and a real-time optical
measurement system. Even though the underlying structural

f'mite-element model may have a large dimension, the real-

time computational requirements involve only matrix and

vector operations where the relevant dimensions are deter-
mined by the number of measurements taken.

The results of a test case derived from the gravity model at

horizon (elevation angle equals zero) are given in Fig. 9. To

test the estimator's ability to recover the boresight from the

measurement values only, the modeled gravitational boresight

before measurements was taken to be zero (_o = 0). For this
trial the deflection was scaled to correspond to a 10-milli-
degree offset in the boresight, and the measurement locations

were evenly spaced on each of the two ribs in the model. (The
tips of the ribs were always included as measurement loca-

tions.) The measurement error was taken to be zero (% = 0).
Thus. f3est(]) and _3est(f) are the estimated boresight offsets
with / evenly spaced measurement locations.

This may be thought of as a worst-case scenario for the

structurally-based estimator since the deflection is spatially

biased (i.e., distorted in a preferred direction), and the esti-
mators were designed to perform best with all distortion

directions equally likely [6], [7]. Nevertheless, a ten-to-one

reduction in the error is achieved. Again the geometrical
estimators perform well with no structural information incor-

porated into the design.

Since the simple geometrical fit recovered the spatially
biased component so well, this suggests that the two designs

might be used in combination. First a simple geometrical fit

can be performed to recover the spatially biased component,
then a version of the structural-optical estimator can be

implemented to obtain a finer resolution about this set point.

While additional simulations with the full three-dimensional

model will be necessary to advance the design process, it is
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already possible to estimate the number of measurements

required to achieve a ten-to-one reduction in the pointing
uncertainty. For example, two adequately resolved cross-
sections would determine all the relevant parameters of a

three-dimensional parabola of revolution (paraboloid). This

would lead to a requirement of twelve measurements (six per

cross-section). Another proposed baseline would require

eighteen targets to similarly cover three cross-sections. This

last design is motivated by the observation of three cross-
sectional nodal lines on the main reflector of some DSN

antennas; these nodal lines apparently lie on or near the best-

fit paraboloid derived from the gravitational models (see, for

example, [13] ).

In Fig. 10 the key locations on the antenna for the measure-

ment system are noted. The proposed design would include

approximately three SHAPES sensor heads mounted on the

quadripod near the subreflector. These sensor heads would

return range measurements from the targets located on the
main reflector, and triangulation methods would be used to

recover the displacement values relative to the sensor heads.
The connection from the sensor heads to the reference plane

would be made by taking additional range measurements at

targets located near the origin of the reference coordinate sys-
tem (base of feedcone). Calculated error estimates indicate
that an additional angle-measuring camera (CCD array) at the

base of the feedcone would adequately measure the angular

displacement of the subreflector and the sensor heads from

their nominal positions.

IV. Conclusions

The concept proposed and analyzed in this article combines
a real-time measurement system, a structural estimator, and a

parabolic fitting algorithm to determine DSN antenna pointing
offsets resulting from unmodeled structural distortions. This

pointing offset data can be used to generate real-time com-
mand biases to correct for pointing errors. Simulations with a

reduced-order antenna finite-element model have demon-

strated that a ten-to-one reduction in boresight uncertainty

can be achieved. The concept requires optical measurements of

the displacements of selected points on the primary and sec-

ondary reflectors relative to some reference coordinate system
at the base of the feedcone.

This work represents one method of improving the pointing

capabilities of DSN antennas by using the techniques of the

spatially random analysis of static systems. As illustrated in

Fig. 11, this approach is suitable for investigating many aspects
of antenna analysis related to surface deformations. While this

work mainly concerns the justification of algorithms which
estimate the structural boresight of an antenna, other relevant

problems concerning the analysis of rms surface errors and the
synthesis of antenna radiation patterns also can be studied in

this framework.
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